Sains Malaysiana 54(6)(2025): 1583-1592

http://doi.org/10.17576/jsm-2025-5406-13

 

Improved Performance of P3HT: PCBM-Based Inverted Organic Solar Cell using SnO2/ZnO Electron Transport Bilayer for Low Light Application

(Peningkatan Prestasi Sel Suria Organik Songsang Berasaskan P3HT:PCBM Menggunakan Dwilapisan Pengangkut Elektron SnO2/ZnO untuk Aplikasi Cahaya Rendah)

 

NOORAKMAR HIDAYAH BINTI MOHAMED HASHINI1,2, MOHAMMAD HAFIZUDDIN HJ JUMALI1 & CHI CHIN YAP1,*

 

1Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia

 

Diserahkan: 23 Disember 2024/Diterima: 4 April 2025

 

Abstract

Organic solar cells (OSCs) have attracted much research attention due to their advantages such as low cost, easy processing, light weight, flexible and suitable for large-scale production. ZnO has shown to be an effective electron transport layer (ETL) in OSCs. However, it also suffers from various defects on its surface and improperly matched work function with the photoactive layer which then hinders electron extraction and conduction in OSCs. Hence, in this work, due to its favorable attributes such as high electron mobility, wide bandgap as well as deep conduction and valence band, SnO2 was chosen in this study as cathode interfacial layer placed in stacked structure with ZnO. This study intends to improve the power conversion efficiency (PCE) of poly(3-hexylthiophene-2,5-diyl) (P3HT): (6,6)-phenyl-C61-butyric-acid-methyl-ester (PCBM) based inverted OSCs by exploiting the properties of SnO2 and ZnO as bilayer ETL. The ETL was inserted between transparent fluorine-doped tin oxide (FTO) and P3HT:PCBM photoactive layer. Experimental analysis of the different configurations of ETL (ZnO only, SnO2/ZnO, and ZnO/SnO2) toward the PCE of inverted type OSCs was presented. The SnO2 layer was synthesized via sol-gel spin coating method. Under both 1-Sun and white LED illumination, the devices with SnO2/ZnO ETL demonstrated the highest PCE of 1.01% and 1.62%, respectively, with 63% and 30% enhancement compared to the control device with ZnO only ETL. Our results suggest that by depositing the SnO2 layer before the ZnO layer, it can enhance the optical transmission, decrease the surface roughness and provide a well-matched energy level.

Keywords: Electron conduction; indoor; optical transmission; organic photovoltaic; work function

 

Abstrak

Sel suria organik (OSC) dilihat semakin menarik perhatian dalam bidang penyelidikan disebabkan oleh kelebihannya seperti ringan, fleksibel, memerlukan fabrikasi yang mudah serta murah dan amat sesuai dalam penyediaan berskala besar. Kajian terdahulu membuktikan bahawa ZnO adalah bahan yang baik dan berkesan sebagai lapisan pengangkut elekton (ETL) dalam OSC. Namun begitu, masih terdapat banyak kelemahan pada lapisan ZnO yang perlu diatasi seperti kecacatan pada permukaan serta fungsi tenaga yang tidak sesuai dengan lapisan fotoaktif yang membantutkan pengekstrakan dan pemindahan elektron di dalam OSC. Dalam kajian ini, SnO2 telah dipilih untuk digunakan sebagai lapisan tambahan untuk membentuk ETL dwilapisan disebabkan kadar konduktiviti elektronnya yang tinggi, jurang tenaga yang besar serta jalur valensi dan konduksi yang lebih dalam. Kajian ini bertujuan untuk meningkatkan kecekapan penukaran kuasa (PCE) peranti OSC songsang berasaskan poli (3-heksilthiofena-2,5-dil) (P3HT):(6,6)-fenil-C61 asid butrik metal ester (PCBM) dengan menggabungkan kelebihan ZnO dan SnO2. ETL dimendapkan di antara lapisan oksida timah terdop fluorin (FTO) dan lapisan fotoaktif P3HT:PCBM. Penyelidikan uji kaji untuk konfigurasi ETL yang berbeza (ZnO, SnO2/ZnO dan ZnO/SnO2) terhadap PCE OSC songsang dibentangkan. Lapisan SnO2 disediakan dengan menggunakan kaedah sol-gel dan salutan putaran. Hasil keputusan menunjukkan peranti dengan ETL SnO2/ZnO menghasilkan PCE tertinggi di bawah kedua-dua keadaan pencahayaan 1-matahari (1.01%) serta pencahayaan LED putih (1.62%). Keputusan ini mencatatkan peningkatan prestasi masing-masing sebanyak 63% dan 30% berbanding peranti kawalan dengan ETL lapisan tunggal ZnO. Hasil kajian ini menunjukkan apabila lapisan SnO2 dimendapkan sebelum lapisan ZnO, ia membantu meningkatkan penghantaran optik, mengurangkan kekasaran permukaan dan menyediakan aras tenaga yang berpadanan.

Kata kunci: Dalam bangunan; fotovoltaik organik; fungsi tenaga; pemindahan elektron; penghantaran optik

 

RUJUKAN

Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M. & Ahmadi, N. 2022. Recent development of indoor organic photovoltaics. Physica Status Solidi (a) 219(5): 2100639. https://doi.org/10.1002/PSSA.202100639

Chandralekha, N.R., Shanthi, J., Swathi, R. & Anoop, K.K. 2024. Enhanced optical performance of solar cell using hydrophobic SnO2/TEOS/MTMS antireflection coating. Environmental Progress & Sustainable Energy 43(5): e14436. https://doi.org/10.1002/ep.14436

Dahal, B., Guo, R., Pathak, R., Rezaee, M.D., Elam, J.W., Mane, A.U. & Li, W. 2022. Enhancing the performance of the perovskite solar cells by modifying the SnO2 electron transport layer. Journal of Physics and Chemistry of Solids 181: 111532. https://doi.org/10.1016/j.jpcs.2023.111532

Davis, R.J., Lloyd, M.T., Ferreira, S.R., Bruzek, M.J., Watkins, S.E., Lindell, L., Sehati, P., Fahlman, M., Anthony, J.E. & Hsu, J.W.P. 2011. Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment. J. Mater. Chem. 21(6): 1721-1729. https://doi.org/10.1039/C0JM02349C

Gao, H., Wei, X., Yu, R., Cao, F.Y., Gong, Y., Ma, Z., Cheng, Y.J., Hsu, C.S. & Tan, Z. 2022. Coordination-induced defects elimination of SnO2 nanoparticles via a small electrolyte molecule for high-performance inverted organic solar cells. Advanced Optical Materials 10(6): 2102031. https://doi.org/10.1002/ADOM.202102031

Günther, M., Lotfi, S., Rivas, S.S., Blätte, D., Hofmann, J.P., Bein, T. & Ameri, T. 2023. The neglected influence of zinc oxide light-soaking on stability measurements of inverted organic solar cells. Advanced Functional Materials 33(13): 2209768. https://doi.org/10.1002/ADFM.202209768

Harada, T., Murotani, H., Matumoto, S. & Honda, H. 2013. Influence of substrate surface roughness on light scattering of TiO2 optical thin films. Chinese Optics Letters 11(S1): S10303. https://doi.org/10.3788/col201311.s10303

Jiang, Y., Sun, L., Jiang, F., Xie, C., Hu, L., Dong, X., Qin, F., Liu, T., Hu, L., Jiang, X. & Zhou, Y. 2019. Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO2 for nonfullerene organic solar cells. Materials Horizons 6(7): 1438-1443. https://doi.org/10.1039/C9MH00379G

Khairulaman, F.L., Yap, C.C. & Hj Jumali, M.H. 2021. Improved performance of inverted type organic solar cell using copper iodide-doped P3HT:PCBM as active layer for low light application. Materials Letters 283: 128827. https://doi.org/10.1016/J.MATLET.2020.128827

Li, H., Yu, B. & Yu, H. 2024. An efficient and stable inverted structure organic solar cell using ZnO modified by 2D ZrSe2 as a composite electron transport layer. Advanced Functional Materials 34(37): 2402128. https://doi.org/10.1002/ADFM.202402128

Mahajan, P., Ahmed, A., Datt, R., Gupta, V. & Arya, S. 2022. Chemically synthesized ZnO-WO 3 nanoparticles as electron and hole transport layer in organic solar cells. ECS Transactions 107(1): 9199-9209. https://doi.org/10.1149/10701.9199ECST

Mohamed Nafeer Wajidh, Nour Attallah Issa, Kam Sheng Lau, Sin Tee Tan, Chin-Hua Chia, Muslizainun Mustapha, Mohammad Hafizuddin bin Jumali & Chi Chin Yap. 2024. Enhancing indoor photovoltaic performance of inverted type organic solar cell by controlling photoactive layer solution concentration. Sains Malaysiana 53(10): 3511-3520. http://doi.org/10.17576/jsm-2024-5310-23

Mussabekova, A.K., Ilyassov, B.R., Аimukhanov, A.K., Tussupbekova, A.K., Zeinidenov, A.K., Valiev, D., Paygin, V., Kudryashov, V.V. & Zhakanova, A.M. 2023. Promising SnOx electron transport layer for polymer solar cells. Physica B: Condensed Matter 666: 415113. https://doi.org/10.1016/J.PHYSB.2023.415113

Nam, M., Huh, J.Y., Park, Y., Hong, Y.C. & Ko, D.H. 2018. Interfacial modification using hydrogenated TiO2 electron-selective layers for high-efficiency and light-soaking-free organic solar cells. Advanced Energy Materials 8(14): 1703064. https://doi.org/10.1002/AENM.201703064

Nurul Nadhirah binti Md Ridzuan & Chi Chin Yap. 2022. Kesan suhu rendaman dan suhu sepuh lindap dalam penyediaan filem nipis bismut sulfida (Bi2S3) terhadap prestasi sel suria organik jenis songsang berasaskan P3HT: PCBM. Sains Malaysiana 51(12): 4099-4110. http://doi.org/10.17576/jsm-2022-5112-18

Omarbekova, G.I., Ilyassov, B.R., Аimukhanov, A.K., Valiev, D.T., Zeinidenov, A.K. & Kudryashov, V.V. 2022. The role of surface defects in the charge transport in organic solar cells based on oxidized indium thin films. Surfaces and Interfaces 31: 102026. https://doi.org/10.1016/J.SURFIN.2022.102026

Sabri, N.S., Yap, C.C., Yahaya, M., Mat Salleh, M. & Hj Jumali, M.H. 2017. Solution-dispersed CuO nanoparticles as anode buffer layer in inverted type hybrid organic solar cells. Physica Status Solidi (A) Applications and Materials Science 214(1): 1600418. https://doi.org/10.1002/PSSA.201600418

Shim, J.W., Zhou, Y., Fuentes-Hernandez, C., Dindar, A., Guan, Z., Cheun, H., Kahn, A. & Kippelen, B. 2012. Studies of the optimization of recombination layers for inverted tandem polymer solar cells. Solar Energy Materials and Solar Cells 107: 51-55. https://doi.org/10.1016/J.SOLMAT.2012.08.004

Suo, Z., Xiao, Z., Li, S., Liu, J., Xin, Y., Meng, L., Liang, H., Kan, B., Yao, Z., Li, C., Wan, X. & Chen, Y. 2023. Efficient and stable inverted structure organic solar cells utilizing surface-modified SnO2 as the electron transport layer. Nano Energy 118: 109032. https://doi.org/10.1016/J.NANOEN.2023.109032

Tarique, W.B., Rahaman, M.H., Dipta, S.S., Howlader, A.H. & Uddin, A. 2024. Solution-processed bilayered ZnO electron transport layer for efficient inverted non-fullerene organic solar cells. Nanomanufacturing 4(2): 81-98. https://doi.org/10.3390/NANOMANUFACTURING4020006

Wajidh, M.N., Yap, C.C., Issa, N.A., Lau, K.S., Tan, S.T., Hj Jumali, M.H., Mustapha, M. & Chia, C.H. 2023. Photovoltaic performance improvement of inverted type organic solar cell by co-introducing isopropanol and carbon quantum dots in photoactive layer. Journal of Materials Science: Materials in Electronics 34(13): 1075. https://doi.org/10.1007/S10854-023-10489-5

Wang, Y. & Tan, S.T. 2022. Composition of electron transport layers in organic solar cells (OSCs). Highlights in Science, Engineering and Technology 12: 99-105. https://doi.org/10.54097/HSET.V12I.1411

Yang, S. & Yu, H. 2023. The modification of ZnO surface with natural antioxidants to fabricate highly efficient and stable inverted organic solar cells. Chemical Engineering Journal 452: 139658. https://doi.org/10.1016/J.CEJ.2022.139658

Yang, W., Luo, Z., Sun, R., Guo, J., Wang, T., Wu, Y., Wang, W., Guo, J., Wu, Q., Shi, M., Li, H., Yang, C. & Min, J. 2020. Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nature Communications 11: 1218. https://doi.org/10.1038/s41467-020-14926-5

Yao, J., Qiu, B., Zhang, Z.G., Xue, L., Wang, R., Zhang, C., Chen, S., Zhou, Q., Sun, C., Yang, C., Xiao, M., Meng, L. & Li, Y. 2020. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nature Communications 11: 2726. https://doi.org/10.1038/S41467-020-16509-W

Yu, R., Shi, R., Liu, H., Wu, G., Ma, Z., Gao, H., He, Z. & Tan, Z. 2022a. Self-assembly metal chelate as ultraviolet filterable interface layer for efficient organic solar cells. Advanced Energy Materials 12(31): 2201306. https://doi.org/10.1002/AENM.202201306

Yu, R., Wei, X., Wu, G., Zhang, T., Gong, Y., Zhao, B., Hou, J., Yang, C. & Tan, Z. 2022b. Efficient interface modification via multi-site coordination for improved efficiency and stability in organic solar cells. Energy and Environmental Science 15(2): 822-829. https://doi.org/10.1039/D1EE03263A

Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J-L., Marder, S.R., Kahn, A. & Kippelen, B. 2012. A universal method to produce low–work function electrodes for organic electronics. Science 336(6079): 327-332. https://doi.org/10.1126/science.1218829

 

*Pengarang untuk surat-menyurat; email: ccyap@ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya