Sains Malaysiana 54(6)(2025): 1583-1592
http://doi.org/10.17576/jsm-2025-5406-13
Improved
Performance of P3HT: PCBM-Based Inverted Organic Solar Cell using SnO2/ZnO
Electron Transport Bilayer for Low Light Application
(Peningkatan
Prestasi Sel Suria Organik Songsang Berasaskan P3HT:PCBM Menggunakan Dwilapisan
Pengangkut Elektron SnO2/ZnO untuk Aplikasi Cahaya Rendah)
NOORAKMAR HIDAYAH BINTI
MOHAMED HASHINI1,2, MOHAMMAD HAFIZUDDIN HJ JUMALI1 &
CHI CHIN YAP1,*
1Department
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Centre of Foundation
Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil,
Selangor, Malaysia
Diserahkan: 23 Disember 2024/Diterima: 4 April 2025
Abstract
Organic solar cells (OSCs) have attracted much
research attention due to their advantages such as low cost, easy processing,
light weight, flexible and suitable for large-scale production. ZnO has shown to be an effective electron transport
layer (ETL) in OSCs. However, it also suffers from various defects on its
surface and improperly matched work function with the photoactive layer which
then hinders electron extraction and conduction in OSCs. Hence, in this work,
due to its favorable attributes such as high electron mobility, wide bandgap as
well as deep conduction and valence band, SnO2 was chosen in this
study as cathode interfacial layer placed in stacked structure with ZnO. This
study intends to improve the power conversion efficiency (PCE) of poly(3-hexylthiophene-2,5-diyl) (P3HT): (6,6)-phenyl-C61-butyric-acid-methyl-ester (PCBM) based
inverted OSCs by exploiting the properties of SnO2 and ZnO as
bilayer ETL. The ETL was inserted between transparent fluorine-doped tin oxide
(FTO) and P3HT:PCBM photoactive layer. Experimental analysis of the different
configurations of ETL (ZnO only, SnO2/ZnO, and ZnO/SnO2)
toward the PCE of inverted type OSCs was presented. The SnO2 layer
was synthesized via sol-gel spin coating method. Under both 1-Sun and white LED
illumination, the devices with SnO2/ZnO ETL demonstrated the highest
PCE of 1.01% and 1.62%, respectively, with 63% and 30% enhancement compared to
the control device with ZnO only ETL. Our results suggest that by depositing
the SnO2 layer before the ZnO layer, it can enhance the optical
transmission, decrease the surface roughness and provide a well-matched energy
level.
Keywords:
Electron conduction; indoor; optical transmission; organic photovoltaic; work
function
Abstrak
Sel suria organik (OSC) dilihat semakin menarik
perhatian dalam bidang penyelidikan disebabkan oleh kelebihannya seperti
ringan, fleksibel, memerlukan fabrikasi yang mudah serta murah dan amat sesuai
dalam penyediaan berskala besar. Kajian terdahulu membuktikan bahawa ZnO adalah
bahan yang baik dan berkesan sebagai lapisan pengangkut elekton (ETL) dalam OSC.
Namun begitu, masih terdapat banyak kelemahan pada lapisan ZnO yang perlu
diatasi seperti kecacatan pada permukaan serta fungsi tenaga yang tidak sesuai
dengan lapisan fotoaktif yang membantutkan pengekstrakan dan pemindahan
elektron di dalam OSC. Dalam kajian ini, SnO2 telah dipilih untuk digunakan
sebagai lapisan tambahan untuk membentuk ETL dwilapisan disebabkan kadar
konduktiviti elektronnya yang tinggi, jurang tenaga yang besar serta jalur
valensi dan konduksi yang lebih dalam. Kajian ini bertujuan untuk meningkatkan kecekapan
penukaran kuasa (PCE) peranti OSC songsang berasaskan poli (3-heksilthiofena-2,5-dil) (P3HT):(6,6)-fenil-C61 asid butrik metal ester (PCBM) dengan
menggabungkan kelebihan ZnO dan SnO2. ETL dimendapkan di antara
lapisan oksida timah terdop
fluorin (FTO) dan lapisan fotoaktif P3HT:PCBM. Penyelidikan uji kaji untuk
konfigurasi ETL yang berbeza (ZnO, SnO2/ZnO dan ZnO/SnO2)
terhadap PCE OSC songsang dibentangkan. Lapisan SnO2 disediakan
dengan menggunakan kaedah sol-gel dan salutan putaran. Hasil keputusan
menunjukkan peranti dengan ETL SnO2/ZnO menghasilkan PCE tertinggi
di bawah kedua-dua keadaan pencahayaan 1-matahari (1.01%) serta pencahayaan LED
putih (1.62%). Keputusan ini mencatatkan peningkatan prestasi masing-masing
sebanyak 63% dan 30% berbanding peranti kawalan dengan ETL lapisan tunggal ZnO. Hasil
kajian ini menunjukkan apabila lapisan SnO2 dimendapkan sebelum
lapisan ZnO, ia membantu meningkatkan penghantaran optik, mengurangkan
kekasaran permukaan dan menyediakan aras tenaga yang berpadanan.
Kata kunci: Dalam bangunan; fotovoltaik organik; fungsi
tenaga; pemindahan elektron; penghantaran optik
RUJUKAN
Alkhalayfeh, M.A., Abdul
Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M. & Ahmadi, N. 2022. Recent development of indoor organic
photovoltaics. Physica Status Solidi (a) 219(5): 2100639.
https://doi.org/10.1002/PSSA.202100639
Chandralekha, N.R., Shanthi, J., Swathi, R. &
Anoop, K.K. 2024. Enhanced optical performance of solar cell using hydrophobic SnO2/TEOS/MTMS antireflection coating. Environmental
Progress & Sustainable Energy 43(5): e14436.
https://doi.org/10.1002/ep.14436
Dahal, B., Guo, R., Pathak, R., Rezaee, M.D.,
Elam, J.W., Mane, A.U. & Li, W. 2022. Enhancing the performance of the perovskite
solar cells by modifying the SnO2 electron transport layer. Journal
of Physics and Chemistry of Solids 181: 111532.
https://doi.org/10.1016/j.jpcs.2023.111532
Davis, R.J., Lloyd, M.T., Ferreira, S.R.,
Bruzek, M.J., Watkins, S.E., Lindell, L., Sehati, P., Fahlman, M., Anthony,
J.E. & Hsu, J.W.P. 2011. Determination of energy level alignment at
interfaces of hybrid and organic solar cells under ambient environment. J.
Mater. Chem. 21(6): 1721-1729. https://doi.org/10.1039/C0JM02349C
Gao, H., Wei, X., Yu, R., Cao, F.Y., Gong, Y.,
Ma, Z., Cheng, Y.J., Hsu, C.S. & Tan, Z. 2022. Coordination-induced defects
elimination of SnO2 nanoparticles via a small electrolyte molecule
for high-performance inverted organic solar cells. Advanced Optical
Materials 10(6): 2102031. https://doi.org/10.1002/ADOM.202102031
Günther, M., Lotfi, S., Rivas, S.S., Blätte,
D., Hofmann, J.P., Bein, T. & Ameri, T. 2023. The neglected influence of
zinc oxide light-soaking on stability measurements of inverted organic solar
cells. Advanced Functional Materials 33(13): 2209768. https://doi.org/10.1002/ADFM.202209768
Harada, T., Murotani, H., Matumoto, S. &
Honda, H. 2013. Influence of substrate surface roughness on light scattering of
TiO2 optical thin films. Chinese Optics Letters 11(S1):
S10303. https://doi.org/10.3788/col201311.s10303
Jiang, Y., Sun, L., Jiang, F., Xie, C., Hu, L.,
Dong, X., Qin, F., Liu, T., Hu, L., Jiang, X. & Zhou, Y. 2019.
Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its
mitigation by SnO2 for nonfullerene organic solar cells. Materials
Horizons 6(7): 1438-1443. https://doi.org/10.1039/C9MH00379G
Khairulaman, F.L., Yap, C.C. & Hj Jumali,
M.H. 2021. Improved performance of inverted type organic solar cell using
copper iodide-doped P3HT:PCBM as active layer for low light application. Materials
Letters 283: 128827. https://doi.org/10.1016/J.MATLET.2020.128827
Li, H., Yu, B. & Yu, H. 2024. An efficient
and stable inverted structure organic solar cell using ZnO modified by 2D ZrSe2 as a composite electron transport layer. Advanced Functional Materials 34(37): 2402128. https://doi.org/10.1002/ADFM.202402128
Mahajan, P., Ahmed, A., Datt, R., Gupta, V.
& Arya, S. 2022. Chemically synthesized ZnO-WO 3 nanoparticles as electron
and hole transport layer in organic solar cells. ECS Transactions 107(1):
9199-9209. https://doi.org/10.1149/10701.9199ECST
Mohamed Nafeer Wajidh, Nour Attallah Issa, Kam
Sheng Lau, Sin Tee Tan, Chin-Hua Chia, Muslizainun Mustapha, Mohammad
Hafizuddin bin Jumali & Chi Chin Yap. 2024. Enhancing indoor photovoltaic
performance of inverted type organic solar cell by controlling photoactive
layer solution concentration. Sains Malaysiana 53(10): 3511-3520.
http://doi.org/10.17576/jsm-2024-5310-23
Mussabekova, A.K., Ilyassov, B.R.,
Аimukhanov, A.K., Tussupbekova, A.K., Zeinidenov, A.K., Valiev, D.,
Paygin, V., Kudryashov, V.V. & Zhakanova, A.M. 2023. Promising SnOx
electron transport layer for polymer solar cells. Physica B: Condensed
Matter 666: 415113. https://doi.org/10.1016/J.PHYSB.2023.415113
Nam, M., Huh, J.Y., Park, Y., Hong, Y.C. &
Ko, D.H. 2018. Interfacial modification using hydrogenated TiO2 electron-selective
layers for high-efficiency and light-soaking-free organic solar cells. Advanced
Energy Materials 8(14): 1703064. https://doi.org/10.1002/AENM.201703064
Nurul Nadhirah binti Md Ridzuan & Chi Chin
Yap. 2022. Kesan suhu rendaman dan suhu sepuh lindap dalam penyediaan filem
nipis bismut sulfida (Bi2S3) terhadap prestasi sel suria
organik jenis songsang berasaskan P3HT: PCBM. Sains Malaysiana 51(12):
4099-4110. http://doi.org/10.17576/jsm-2022-5112-18
Omarbekova, G.I., Ilyassov, B.R.,
Аimukhanov, A.K., Valiev, D.T., Zeinidenov, A.K. & Kudryashov, V.V.
2022. The role of surface defects in the charge transport in organic solar
cells based on oxidized indium thin films. Surfaces and Interfaces 31:
102026. https://doi.org/10.1016/J.SURFIN.2022.102026
Sabri, N.S., Yap, C.C., Yahaya, M., Mat Salleh,
M. & Hj Jumali, M.H. 2017. Solution-dispersed CuO nanoparticles as anode
buffer layer in inverted type hybrid organic solar cells. Physica Status
Solidi (A) Applications and Materials Science 214(1): 1600418.
https://doi.org/10.1002/PSSA.201600418
Shim, J.W., Zhou, Y., Fuentes-Hernandez, C.,
Dindar, A., Guan, Z., Cheun, H., Kahn, A. & Kippelen, B. 2012. Studies of
the optimization of recombination layers for inverted tandem polymer solar
cells. Solar Energy Materials and Solar Cells 107: 51-55.
https://doi.org/10.1016/J.SOLMAT.2012.08.004
Suo, Z., Xiao, Z., Li, S., Liu, J., Xin, Y.,
Meng, L., Liang, H., Kan, B., Yao, Z., Li, C., Wan, X. & Chen, Y. 2023.
Efficient and stable inverted structure organic solar cells utilizing
surface-modified SnO2 as the electron transport layer. Nano
Energy 118: 109032. https://doi.org/10.1016/J.NANOEN.2023.109032
Tarique, W.B., Rahaman, M.H., Dipta, S.S., Howlader,
A.H. & Uddin, A. 2024. Solution-processed bilayered ZnO electron transport
layer for efficient inverted non-fullerene organic solar cells. Nanomanufacturing 4(2): 81-98. https://doi.org/10.3390/NANOMANUFACTURING4020006
Wajidh, M.N., Yap, C.C., Issa, N.A., Lau, K.S.,
Tan, S.T., Hj Jumali, M.H., Mustapha, M. & Chia, C.H. 2023. Photovoltaic
performance improvement of inverted type organic solar cell by co-introducing
isopropanol and carbon quantum dots in photoactive layer. Journal of
Materials Science: Materials in Electronics 34(13): 1075.
https://doi.org/10.1007/S10854-023-10489-5
Wang, Y. & Tan, S.T. 2022. Composition of electron
transport layers in organic solar cells (OSCs). Highlights in Science,
Engineering and Technology 12: 99-105. https://doi.org/10.54097/HSET.V12I.1411
Yang, S. & Yu, H. 2023. The modification of
ZnO surface with natural antioxidants to fabricate highly efficient and stable
inverted organic solar cells. Chemical Engineering Journal 452: 139658.
https://doi.org/10.1016/J.CEJ.2022.139658
Yang, W., Luo, Z., Sun, R., Guo, J., Wang, T.,
Wu, Y., Wang, W., Guo, J., Wu, Q., Shi, M., Li, H., Yang, C. & Min, J.
2020. Simultaneous enhanced efficiency and thermal stability in organic solar
cells from a polymer acceptor additive. Nature Communications 11: 1218.
https://doi.org/10.1038/s41467-020-14926-5
Yao, J., Qiu, B., Zhang, Z.G., Xue, L., Wang,
R., Zhang, C., Chen, S., Zhou, Q., Sun, C., Yang, C., Xiao, M., Meng, L. &
Li, Y. 2020. Cathode engineering with perylene-diimide interlayer enabling over
17% efficiency single-junction organic solar cells. Nature Communications 11: 2726. https://doi.org/10.1038/S41467-020-16509-W
Yu, R., Shi, R., Liu, H., Wu, G., Ma, Z., Gao,
H., He, Z. & Tan, Z. 2022a. Self-assembly metal chelate as ultraviolet
filterable interface layer for efficient organic solar cells. Advanced
Energy Materials 12(31): 2201306. https://doi.org/10.1002/AENM.202201306
Yu, R., Wei, X., Wu, G., Zhang, T., Gong, Y.,
Zhao, B., Hou, J., Yang, C. & Tan, Z. 2022b. Efficient interface
modification via multi-site coordination for improved efficiency and stability
in organic solar cells. Energy and Environmental Science 15(2): 822-829.
https://doi.org/10.1039/D1EE03263A
Zhou, Y., Fuentes-Hernandez, C., Shim, J.,
Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H.,
Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M.,
Sojoudi, H., Barlow, S., Graham, S., Brédas, J-L., Marder, S.R., Kahn, A. &
Kippelen, B. 2012. A universal method to produce low–work function electrodes
for organic electronics. Science 336(6079): 327-332.
https://doi.org/10.1126/science.1218829
*Pengarang
untuk surat-menyurat; email:
ccyap@ukm.edu.my